Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol ; 8(6): 583-92, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11410377

RESUMO

BACKGROUND: Most transcriptional activators minimally comprise two functional modules, one for DNA binding and the other for activation. Several activators also bear an oligomerization region and bind DNA as dimers or higher order oligomers. In a previous study we substituted these domains of a protein activator with synthetic counterparts [Mapp et al., Proc. Natl. Acad. Sci. USA 97 (2000) 3930-3935]. An artificial transcriptional activator, 4.2 kDa in size, comprised of a DNA binding hairpin polyamide tethered to a 20 residue activating peptide (AH) was shown to stimulate promoter specific transcription [Mapp et al., Proc. Natl. Acad. Sci. USA 97 (2000) 3930-3935]. The question arises as to the general nature and the versatility of this minimal activator motif and whether smaller ligands can be designed which maintain potent activation function. RESULTS: Here we have replaced the 20 amino acid AH peptide with eight or 16 residues derived from the activation domain of the potent viral activator VP16. The 16 residue activation module coupled to the polyamide activated transcription over two-fold better than the analogous AH conjugate. Altering the site of attachment of the activation module on the polyamide allowed reduction of the intervening linker from 36 atoms to eight without significant diminution of the activation potential. In this study we also exchanged the polyamide to target a different sequence without compromising the activation function further demonstrating the generality of this design. CONCLUSIONS: The polyamide activator conjugates described here represent a class of DNA binding ligands which are tethered to a second functional moiety, viz. an activation domain, that recruits elements of the endogenous transcriptional machinery. Our results define the minimal structural elements required to construct artificial, small molecule activators. If such activators are cell-permeable and can be targeted to designated sites in the genome, this series of conjugates may then serve as a tool to study mechanistic aspects of transcriptional regulation and eventually to modulate gene expression relevant to human diseases.


Assuntos
DNA/metabolismo , Transativadores/química , Sequência de Bases , Sítios de Ligação , Proteína Vmw65 do Vírus do Herpes Simples/química , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Transativadores/metabolismo , Transcrição Gênica
2.
Nature ; 409(6816): 109-13, 2001 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-11343124

RESUMO

In yeast (Saccharomyces cerevisiae), transcriptional activators, such as Gal4 and Gal4-VP16, work ordinarily from sites located in the upstream activating sequence (UAS) positioned about 250 base pairs upstream of the transcription start site. In contrast to their behaviour in mammalian cells, however, such activators fail to work when positioned at distances greater than approximately 600-700 base pairs upstream, or anywhere downstream of the gene. Here we show that, in yeast, a gene bearing an enhancer positioned 1-2 kilobases downstream of the gene is activated if the reporter is linked to a telomere, but not if it is positioned at an internal chromosomal locus. These observations are explained by the finding that yeast telomeres form back-folding, or looped, structures. Because yeast telomeric regions resemble the heterochromatin found in higher eukaryotes, these findings might also explain why transcription of some higher eukaryotic genes depends on their location in heterochromatin.


Assuntos
Elementos Facilitadores Genéticos , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Telômero , Cromatina , Cromossomos Fúngicos , DNA Fúngico/fisiologia , DNA Fúngico/ultraestrutura , Genes Reporter , Conformação de Ácido Nucleico , Testes de Precipitina , Telômero/fisiologia , Telômero/ultraestrutura , Ativação Transcricional
3.
Genes Dev ; 15(8): 1007-20, 2001 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11316794

RESUMO

The GAL4 dimerization domain (GAL4-dd) is a powerful transcriptional activator when tethered to DNA in a cell bearing a mutant of the GAL11 protein, named GAL11P. GAL11P (like GAL11) is a component of the RNA-polymerase II holoenzyme. Nuclear magnetic resonance (NMR) studies of GAL4-dd revealed an elongated dimer structure with C(2) symmetry containing three helices that mediate dimerization via coiled-coil contacts. The two loops between the three coiled coils form mobile bulges causing a variation of twist angles between the helix pairs. Chemical shift perturbation analysis mapped the GAL11P-binding site to the C-terminal helix alpha3 and the loop between alpha1 and alpha2. One GAL11P monomer binds to one GAL4-dd dimer rendering the dimer asymmetric and implying an extreme negative cooperativity mechanism. Alanine-scanning mutagenesis of GAL4-dd showed that the NMR-derived GAL11P-binding face is crucial for the novel transcriptional activating function of the GAL4-dd on GAL11P interaction. The binding of GAL4 to GAL11P, although an artificial interaction, represents a unique structural motif for an activating region capable of binding to a single target to effect gene expression.


Assuntos
Proteínas Fúngicas/química , Proteínas de Saccharomyces cerevisiae , Transativadores/química , Fatores de Transcrição/química , Alanina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA , Dimerização , Proteínas Fúngicas/metabolismo , Espectroscopia de Ressonância Magnética , Complexo Mediador , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Temperatura , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Proc Natl Acad Sci U S A ; 98(5): 2550-4, 2001 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-11226276

RESUMO

The yeast transcriptional repressor Tup1, tethered to DNA, represses to strikingly different degrees transcription elicited by members of two classes of activators. Repression in both cases is virtually eliminated by mutation of either member of the cyclin-kinase pair Srb10/11. In contrast, telomeric chromatin affects both classes of activators equally, and in neither case is that repression affected by mutation of Srb10/11. In vitro, Tup1 interacts with RNA polymerase II holoenzyme bearing Srb10 as well as with the separated Srb10. These and other findings indicate that at least one aspect of Tup1's action involves interaction with the RNA polymerase II holoenzyme.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Nucleares , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica
5.
Essays Biochem ; 37: 1-15, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11758451

RESUMO

Many crucial cellular enzymes--including RNA polymerases, kinases, phosphatases, proteases, acetylaters, etc.--have multiple potential substrates. Regulation entails substrate selection, a process effected by a mechanism we call regulated localization. This formulation is particularly well illustrated by the mechanisms of gene regulation. Analysis of these mechanisms reveals that regulated localization requires simple molecular interactions. These molecular interactions readily lend themselves to combinatorial control. This system of regulation is highly 'evolvable'. Its use accounts, at least in part, for the nature of many of the complexities observed in biological systems.


Assuntos
DNA/metabolismo , Transcrição Gênica , Animais , Regulação Bacteriana da Expressão Gênica , Humanos , Ligação Proteica , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 97(8): 3930-5, 2000 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-10760265

RESUMO

Eukaryotic transcriptional activators are minimally comprised of a DNA binding domain and a separable activation domain; most activator proteins also bear a dimerization module. We have replaced these protein modules with synthetic counterparts to create artificial transcription factors. One of these, at 4.2 kDa, mediates high levels of DNA site-specific transcriptional activation in vitro. This molecule contains a sequence-specific DNA binding polyamide in place of the typical DNA binding region and a nonprotein linker in place of the usual dimerization peptide. Thus our activating region, a designed peptide, functions outside of the archetypal protein context, as long as it is tethered to DNA. Because synthetic polyamides can, in principle, be designed to recognize any specific sequence, these results represent a key step toward the design of small molecules that can up-regulate any specified gene.


Assuntos
Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição/fisiologia , Ativação Transcricional/fisiologia , Sequência de Aminoácidos , Pegada de DNA , Dimerização , Cinética , Dados de Sequência Molecular , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Transcrição/química
7.
Proc Natl Acad Sci U S A ; 97(5): 1988-92, 2000 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-10681438

RESUMO

We describe a series of transcriptional activators generated by adding amino acids (eight in one case, six in another) to fragments of the yeast Saccharomyces cerevisiae activator Gal4 that dimerize and bind DNA. One of the novel activating regions identified by this procedure is unusual, compared with previously characterized yeast activating regions, in the following ways: it works more strongly than does Gal4's natural activating region as assayed in yeast; it is devoid of acidic residues; and several lines of evidence suggest that it sees targets in the yeast transcriptional machinery at least partially distinct from those seen by Gal4's activating region.


Assuntos
Proteínas de Saccharomyces cerevisiae , Transativadores/metabolismo , Ativação Transcricional , Sequência de Bases , Sítios de Ligação , DNA Fúngico , Proteínas de Ligação a DNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Mutagênese , Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 97(6): 2686-91, 2000 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-10688916

RESUMO

The Drosophila protein Chip potentiates activation by several enhancers and is required for embryonic segmentation. Chip and its mammalian homologs interact with and promote dimerization of nuclear LIM proteins. No known Drosophila LIM proteins, however, are required for segmentation, nor for expression of most genes known to be regulated by Chip. Here we show that Chip also interacts with diverse homeodomain proteins using residues distinct from those that interact with LIM proteins, and that Chip potentiates activity of one of these homeodomain proteins in Drosophila embryos and in yeast. These and other observations help explain the roles of Chip in segmentation and suggest a model to explain how Chip potentiates activation by diverse enhancers.


Assuntos
Proteínas de Drosophila , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Cromatografia de Afinidade , Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Drosophila/metabolismo , Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Modelos Biológicos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras , Transativadores/química , Transativadores/genética , Transcrição Gênica , Ativação Transcricional
9.
Proc Natl Acad Sci U S A ; 96(19): 10679-83, 1999 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-10485885

RESUMO

We show that the Drosophila protein DSP1, an HMG-1/2-like protein, binds DNA highly cooperatively with three members of the Rel family of transcriptional regulators (NF-kappaB, the p50 subunit of NF-kappaB, and the Rel domain of Dorsal). This cooperativity is apparent with DNA molecules bearing consensus Rel-protein-binding sites and is unaffected by the presence of a negative regulatory element, a sequence previously proposed to be important for mediating repression by these Rel proteins. The cooperativity observed in these DNA-binding assays is paralleled by interactions between protein pairs in the absence of DNA. We also show that in HeLa cells, as assayed by transient transfection, expression of DSP1 increases activation by Dorsal from the twist promoter and inhibits that activation from the zen promoter, consistent with the previously proposed idea that DSP1 can affect the action of Dorsal in a promoter-specific fashion.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila , Proteínas de Grupo de Alta Mobilidade/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição , Sequência de Bases , Sítios de Ligação/genética , Proteínas de Ligação a DNA/metabolismo , Proteína HMGB1 , Células HeLa , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Subunidade p50 de NF-kappa B , Plasmídeos , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica , Transfecção
10.
Proc Natl Acad Sci U S A ; 96(6): 2668-73, 1999 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-10077568

RESUMO

The idea that recruitment of the transcriptional machinery to a promoter suffices for gene activation is based partly on the results of "artificial recruitment" experiments performed in vivo. Artificial recruitment can be effected by a "nonclassical" activator comprising a DNA-binding domain fused to a component of the transcriptional machinery. Here we show that activation by artificial recruitment in yeast can be sensitive to any of three factors: position of the activator-binding elements, sequence of the promoter, and coding sequences downstream of the promoter. In contrast, classical activators worked efficiently at all promoters tested. In all cases the "artificial recruitment" fusions synergized well with classical activators. A classical activator evidently differs from a nonclassical activator in that the former can touch multiple sites on the transcriptional machinery, and we propose that that difference accounts for the broader spectrum of activity of the typical classical activator. A similar conclusion is reached from studies in mammalian cells in the accompanying paper [Nevado, J., Gaudreau, L., Adam, M. & Ptashne, M. (1999) Proc. Natl. Acad. Sci. USA 96, 2674-2677].


Assuntos
Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Ativação Transcricional
11.
Proc Natl Acad Sci U S A ; 96(6): 2674-7, 1999 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-10077569

RESUMO

We show that the typical "nonclassical" activator, which comprises a fusion protein bearing a component of the transcriptional machinery fused to a DNA-binding domain, activates transcription in mammalian cells only weakly when tested with an array of promoters. However, as found in analogous "artificial recruitment" experiments performed in yeast, these activators work synergistically with "classical" activators. The effect of the classical activator in such experiments requires that it be tethered to DNA, a requirement that cannot be overcome by expression of that classical activator at high levels. The effect of the one nonclassical activator that does elicit significant levels of transcription when working alone (i.e., that bearing TATA box-binding protein) is strongly influenced by promoter architecture. The results, consistent with those of analogous experiments in yeast [see the accompanying paper: Gaudreau, L., Keaveney, M., Nevado, J., Zaman, Z., Bryant, G. O., Struhl, K. & Ptashne, M. (1999) Proc. Natl. Acad. Sci. USA 96, 2668-2673], suggest that classical activators, presumably by virtue of their abilities to interact with multiple targets, have a functional flexibility that nonclassical activators lack.


Assuntos
Fatores de Transcrição , Transcrição Gênica , Ativação Transcricional , Células HeLa , Humanos
12.
Curr Biol ; 8(24): R897, 1998 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-9844213
13.
Curr Biol ; 8(22): R812-22, 1998 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-9818164

RESUMO

Cells detect extracellular signals by allostery and then give those signals meaning by 'regulated localization'. We suggest that this formulation applies to many biological processes and is particularly well illustrated by the mechanisms of gene regulation. Analysis of these mechanisms reveals that regulated localization requires simple molecular interactions that are readily used combinatorially. This system of regulation is highly 'evolvable', and its use accounts, at least in part, for the nature of the complexities observed in biological systems.


Assuntos
Regulação da Expressão Gênica , Transdução de Sinais , Animais , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Transativadores/metabolismo
14.
Proc Natl Acad Sci U S A ; 95(23): 13543-8, 1998 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-9811836

RESUMO

A C-terminal segment of the yeast activator Gal4 manifests two functions: When tethered to DNA, it elicits gene activation, and it binds the inhibitor Gal80. Here we examine the effects on these two functions of cysteine and proline substitutions. We find that, although certain cysteine substitutions diminish interaction with Gal80, those substitutions have little effect on the activating function in vivo and interaction with TATA box-binding protein (TBP) in vitro. Proline substitutions introduced near residues critical for Gal80 binding abolish that interaction but once again have no effect on the activating function. Crosslinking experiments show that a defined position in the activating peptide is in close proximity to TBP and Gal80 in the two separate reactions and show that binding of the inhibitor blocks binding to TBP. Thus, the same stretch of amino acids are involved in two quite different protein-protein interactions: binding to Gal80, which depends on a precise sequence and the formation of a defined secondary structure, or interactions with the transcriptional machinery in vivo, which are not impaired by perturbations of either sequence or structure.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Ativação Transcricional , Substituição de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Proteínas de Membrana/metabolismo , Mutagênese , Ligação Proteica , Saccharomyces cerevisiae , Transcrição Gênica
15.
Mol Cell ; 1(6): 895-904, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9660972

RESUMO

Expression of protein-coding genes in eukaryotes involves the recruitment, by transcriptional activator proteins, of a transcription initiation apparatus consisting of greater than 50 polypeptides. Recent genetic and biochemical evidence in yeast suggests that a subset of these proteins, called SRB proteins, are likely targets for transcriptional activators. We demonstrate here, through affinity chromatography, photo-cross-linking, and surface plasmon resonance experiments, that the GAL4 activator interacts directly with the SRB4 subunit of the RNA polymerase II holoenzyme. The GAL4 activation domain binds to two essential segments of SRB4. The physiological relevance of this interaction is confirmed by mutations in SRB4, which occur within its GAL4-binding domain and which restore activation in vivo by a GAL4 derivative bearing a mutant activation domain.


Assuntos
Coenzimas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação/fisiologia , Técnicas Biossensoriais , Coenzimas/genética , Reagentes de Ligações Cruzadas/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Complexo Mediador , Complexos Multienzimáticos/metabolismo , Mutagênese/fisiologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fotoquímica , RNA Polimerase II/genética , Análise Espectral , Especificidade por Substrato , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia
16.
Mol Cell ; 1(6): 913-6, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9660974

RESUMO

It has been argued that many transcriptional activators work by "recruitment," that is, by helping the transcriptional machinery bind stably to DNA. We demonstrate here a realization of a strong prediction of this idea in an in vitro transcription reaction performed with purified yeast RNA polymerase II holoenzyme and a classical transcriptional activator. We show that the level of transcription reached by the activator working on low concentrations of holoenzyme can also be reached in the absence of activator by raising the holoenzyme concentration, and that under that condition the activator has no further stimulatory effect. We also show, in agreement with another prediction of the recruitment model, that in a reaction using a holoenzyme purified from cells bearing the "P" mutation, transcription is stimulated by a DNA-tethered peptide that binds the mutant holoenzyme component Gal11P but that lacks a classical activating region.


Assuntos
Coenzimas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição TFII , Ativação Transcricional/fisiologia , Leveduras/genética , Coenzimas/genética , Proteínas de Ligação a DNA , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Reporter , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , Fatores de Transcrição/genética , Leveduras/enzimologia
17.
Proc Natl Acad Sci U S A ; 95(13): 7322-6, 1998 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-9636147

RESUMO

The Drosophila HMG1-like protein DSP1 was identified by its ability to inhibit the transcriptional activating function of Dorsal in a promoter-specific fashion in yeast. We show here that DSP1 as well as its mammalian homolog hHMG2 bind to the mammalian protein SP100B and that SP100B in turn binds to human homologs of HP1. The latter is a Drosophila protein that is involved in transcriptional silencing. Each of these proteins represses transcription when tethered to DNA in mammalian cells. These results suggest how heterochromatin proteins might be recruited to specific sites on DNA with resultant specific effects on gene expression.


Assuntos
Antígenos Nucleares , Cromatina/metabolismo , Proteínas de Drosophila , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição , Transcrição Gênica , Animais , Autoantígenos/metabolismo , Núcleo Celular/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Drosophila , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , beta-Galactosidase/metabolismo
20.
Nat Struct Biol ; 4(9): 744-50, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9303003

RESUMO

The solution structure and backbone dynamics of the transcriptional activator PUT3 (31-100) has been characterized using NMR spectroscopy. PUT3 (31-100) contains three distinct domains: a cysteine zinc cluster, linker, and dimerization domain. The cysteine zinc cluster of PUT3 closely resembles the solution structure of GAL4, while the dimerization domain forms a long coiled-coil similar to that observed in the crystal structures of GAL4 and PPR1. However, the residues at the N-terminal end of the coiled-coil behave very differently in each of these proteins. A comparison of the structural elements within this region provides a model for the DNA binding specificity of these proteins. Furthermore, we have characterized the dynamics of PUT3 to find that the zinc cluster and dimerization domains have very diverse dynamics in solution. The dimerization domain behaves as a large protein, while the peripheral cysteine zinc clusters have dynamic properties similar to small proteins.


Assuntos
Proteínas Fúngicas/química , Conformação Proteica , Proteínas de Saccharomyces cerevisiae , Transativadores/química , Sequência de Aminoácidos , Cisteína/química , DNA/química , Dimerização , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Transcrição , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...